NOT YOUR SITE?

Sunday, December 1, 2013

I) TRICKY ESR FOR THE SQUARE ROOT OF 13

Q: What is the square root of 13?

..__
√13    = ?  


Okay, let's apply ESR in taking the square root of 13... 

.._3._                                We choose 3 because 13 is in-between 16 (the square of 4)
√13.00'00'00'00                  and 9 (square of 3) 

________________

4.02  = 16.00                        Do the Square Averaging Method
9/8<<
           14.---
7/6<<
3.52 12.25  .
           28.---   / 2
           14.---
_________________

3.72   =  9.49
3x14  =  4 2    .
            (Blank) OVER


3.62        =     9.36
3x12       =     3 6    .
                 < 12.96 >
____________________

.._3. 6                      (Write down 6 after 3...)        
√13.00'00'00'00      
  


___________________

3.62           =     9.36
3x12          =     3 6    .
                   < 12.96 >
                          36    .
3.652        =    13.32       <<< Middle Square
4/3<<
                       13.---        <<< Lower  Quarter Square
2/1<<  
3.62          =    12.96    .  
                       26.---  ./ 2
                       13.---
_________________

3.622   =  12.96'04
36x4  =         14'4    .
                    (Blank)  OVER


3.612   =  12.96'01               <<< Later, you'll need to compute this...
36x2  =          7'2  .
                   (Blank)  OVER

3.602  = < 12.96'00

 Take Note:  
Sampling the digits 2 and 1 give us a sum values  which are 'greater than' 13. In this case, we must  resort into choosing  the digit "0" as the next digit after 3.6. don't forget to paste '00' after 12.96 
_________________

.._3. 6   0                 .    (Write down 0 after 3.6 ...)        
√13.00'00'00'00 
 


_________________

3.602      = < 12.96'00 > 
                          3 60   .
3.6052   =      12.99'60
7/6 <<<
                     13.---
9/8 <<<
3.612      =     13.0321  . <<< Solve the sampling for 3.61  (See Above, Left Side))
                     26.---   / 2
                     13.---
_________________

3.6072   =  12.96'00'49
" x 14   =          5 04 0   .
                      (Blank)    OVER


3.6062   =  12.96'00'36           <<< Later, you'll also need to compute this...
" x 12  =           4'32'0  .
                      (Blank)    OVER


 3.6052   =    < 12.99'60'25

Take Note:
Again, the two digits 7 and 6 failed to fit as the next candidate, so we must choose the digit '5" as the required digit. Simply copy the value for the middle square  "3.6052  = 12.99'60" but DON'T FORGET TO PASTE '25', so you'll not go wrong in computing for the next digit we're looking for. 

____________________

.._3. 6   0   5           (Write down 5 after 3.60 ...)        
√13.00'00'00'00 
 

___________________

3.6052     =   12.99'60'25
                            36'05  .
3.60552    =   12.99'96'30
7/6 <<<
                     13.---
9/8 <<<
3.601      =     13.00'32'36  .
                      26.---     / 2
                      13.---
____________________

3.60572    =  12.99'60'25'49
" x 14      =           50'47'0    .
                            (Blank)   OVER


3.60562    =  12.99'60'25'36
" x 12     =            43'26'0    .
                            (Blank)   OVER

3.60552   = < 12.99'96'30'25 >   <<< Don't forget to paste '25'
______________________

.._3. 6   0   5    5     (Finally, write down 5 after 3.605 ...)        
√13.00'00'00'00 
 
         


2 comments:

  1. Correction
    ... to get the square root 3.6055, the format should be...

    Square of 3.606 = 13.00'32'36
    9/8 <<
    Square of 3.60575 = 13.00'14'33'06
    7/6 <<
    Square of 3.6055 = 12.99'96'30'25

    Note:
    Square of 3.6057 = 13.xxxx over
    Square of 3.6056 = 13.xxx 0ver
    So we choose the square of 3.6055 = 12.99'96'30'25

    ReplyDelete
  2. Final words:
    In this method, two important things that kids should learn...
    Learning the squares of numbers ending in 5 from the square of 15 up to 95...
    Getting the squares of the succeeding Middle squares, just follow the COPY and Paste Middle Square Method.

    Thank You for giving me chance to publish this blog and help kids in getting the square root of any number in a much systematic and organized method , minimizing the trial and error method using the long hand division of square rooting.

    ReplyDelete